

Entropy & Information

Shannon Entropy - Recap!

Suppose we learn a random variable X

$$H(X) = -\sum_x p_x \log p_x \quad \text{≡ "uncertainty about } X \text{ before learning it"}$$

Note $\lim_{x \rightarrow 0} x \log \frac{1}{x} = 0$

$\log \equiv \log_2$

"Amount of information we gain on learning X "

Suppose a source is producing data in the form of random variables X_1, X_2, X_3, \dots

Suppose each random variable can take a character x_n with probability p_n .

What's the minimal physical resources required to store the data produced by the source?

Ans: n symbol string can be compressed to $nH(X)$ symbols

Shannon's noiseless coding theorem

e.g. Suppose a source of information produces $1, 2, 3, 4$ with probabilities $\frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}$

A naive binary encoding $1=00 \quad 2=01 \quad 3=10 \quad 4=11$

On average the length of a string with this encoding is

$$2 \times \frac{1}{2} + 2 \times \frac{1}{4} + 2 \times \frac{1}{8} + 2 \times \frac{1}{8} = 2$$

Then we can use the bias to reduce the amount of symbols required to store data from that source by using less characters to store commonly obtained symbols & more to store less likely ones.

$$\text{eg. } 1 = 0 \quad 2 = 10 \quad 3 = 110 \quad 4 = 111$$

On average the length of a string with this encoding is

$$1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 3 \times \frac{1}{8} + 3 \times \frac{1}{8} = \frac{7}{4} \leq 2$$

New code is more efficient!

Sketch of general proof:

Binary case. First - $X = \begin{cases} 1 & \text{with prob } p \\ 0 & \text{with prob } 1-p \end{cases}$

Consider a data string of length n

In the limit of large n , a typical bit string will contain about $n(z-p) 0s$ and $np 1s$.

There are ${}^n C_{np}$ such typical strings

$$\begin{aligned} \log \left({}^n C_{np} \right) &= \log \left(\frac{n!}{(np)!(n-zp)!} \right) \\ &= \log n! - \log(np!) - \log((n-zp)!) \end{aligned}$$

Use Stirling approximation $\log(n!) \approx n \log n - n$ (for large n)

$$\log \left({}^n C_{np} \right) \approx n \log n - n - (np \log np - np + n(z-p) \log(n(z-p)) - n(z-p))$$

$$= -np \log p - n(1-p) \log(1-p) = n H(p)$$

$$\Rightarrow \text{no. of typical strings} \approx 2^{\uparrow n H(p)} \text{ binary entropy}$$

Compression strategy - assign a positive integer to each of the possible typical bit strings.

There are $2^{n H(p)}$ such strings

so $2^{n H(p)}$ letters are required

& each letter can be encoded using $n H(p)$ bits.

Note - the completely uniform distribution cannot be compressed

$$\text{i.e. } H(\frac{1}{2}) = -\frac{1}{2} \log(\frac{1}{2}) - \frac{1}{2} \log(\frac{1}{2}) = -\log(\frac{1}{2}) = \log 2 = 1$$

i.e. 1 bits are 'encoded' in 1 bits

Generalization beyond binary case.

If letter k occurs with probability p_k in a string of length n each k will typically occur $n p_k$ times

Then we $\frac{n!}{\prod_k (n p_k)!}$ such typical strings

$$\& \frac{n!}{\prod_u (n p_u)!} \approx 2^{n H(X)} \Rightarrow n H(X) \text{ binary encoding possible}$$

\Rightarrow Operational interpretation of Shannon entropy!

Conditional Entropy & Mutual Information

Consider 2 random variables X & Y

- How is the information content of X related to Y ?

Conditional entropy & Mutual information provide answers

But first: Joint Entropy

$$H(X, Y) = \sum_{x,y} p(x,y) \log(p(x,y))$$

This is the total uncertainty about X & Y

Suppose we know the value of Y , so we have gained $H(Y)$ bits of information.

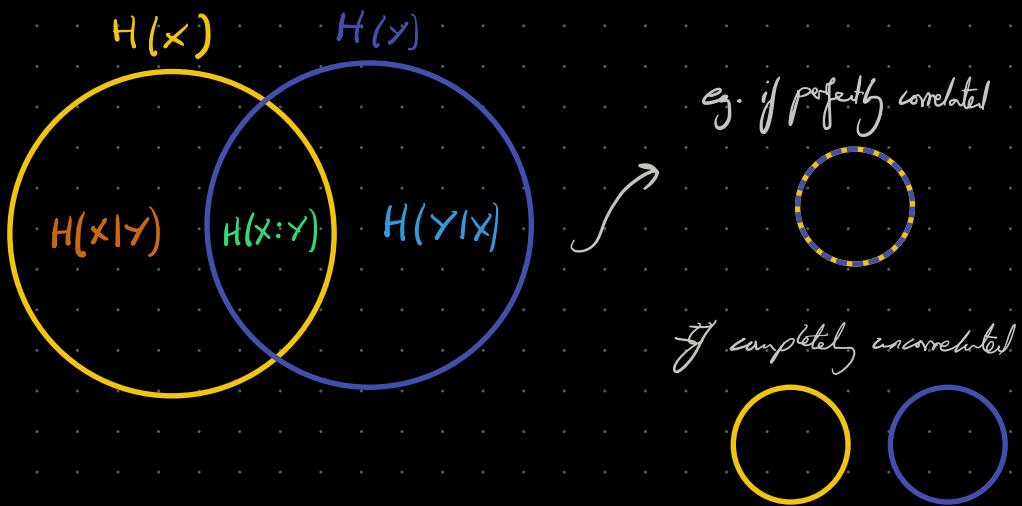
The conditional entropy of X on knowing Y is the remaining uncertainty in X on knowing Y .

$$H(X|Y) = H(X, Y) - H(Y)$$

Mutual information measures the amount of information X and Y have in common - i.e. measures their correlations

$$H(X:Y) = H(X) + H(Y) - H(X, Y)$$

The following Venn diagram is a super useful tool to get a sense of their properties.



Can read off some properties straight from the venn:

- $0 \leq H(X|Y) \leq H(X)$
- $H(X|Y) \neq H(Y|X)$
- $0 \leq H(X:Y) \leq \min\{H(X), H(Y)\}$

Downing Venn is helpful for providing an intuition but is not the full story — always prove inequalities also independently.
(Problem sheet for this week will provide many)

Relative Entropy — a measure of the closeness of 2 distributions. Useful for proving stuff.

$$H(p(x) \parallel q(x)) = \sum_x p(x) \log\left(\frac{p(x)}{q(x)}\right) \rightarrow = 0 \text{ if } p(x) = q(x)$$

$$= -H(X) - \sum_x p(x) \log q(x)$$

- $H(p(x) \parallel q(x)) \geq 0$ (to prove this use $-\log(x) \geq \frac{1-x}{\ln 2}$
 $\Rightarrow H(p(x) \parallel q(x)) \geq \sum_x p(x) \left(1 - \frac{q(x)}{p(x)}\right) \geq 0$)
- $H(p(x) \parallel \pi_d) = -H(X) - \sum_x p(x) \log(\pi_d)$
 $= \log(d) - H(X)$

Shannon entropy \equiv relative entropy to max. uncertain distribution

Von Neumann Entropy

$$S(\rho) = -\text{Tr}(\rho \log \rho) = -\sum_i \lambda_i \log \lambda_i$$
$$= H(\{\lambda_i\})$$

egs of ρ
 λ

Similarly to classical case, $S(\rho)$ quantifies the compressibility of quantum information.

$\rho^{\otimes n}$ can be compressed to σ that lives on a Hilbert space H_C with $\dim(H_C) = 2^n S(\rho)$

Intuition roughly: the some σ can look at subspace corresponding to typical sequences of eigenvalues.

See Preskill's notes for a proof.

Important Properties

1) Pure states have zero entropy

$$\rho = |\psi\rangle\langle\psi| \quad \lambda = 1 \quad S(\rho) = \log(1) = 0$$

2) Invariance: $S(U\rho U^\dagger) = S(\rho)$ (eigenvalues are left unchanged)

3) Maximum: $\max S(\rho) = S(I_d) = \log(d)$

4) Entropy of measurement:

Say you measure $M = \sum m_j |m_j\rangle\langle m_j|$

$$P(m_j) = \langle m_j | \rho | m_j \rangle$$

$$Y = \{m_j, P(m_j)\}$$

$$\Rightarrow H(Y) \geq S(\rho)$$

Equivalent to the statement that replacing ρ in any basis with its decohered variant increases entropy.

i.e. killing off coherence increases entropy.

5) Additivity: $S(\rho_A \otimes \rho_B) = S(\rho_A) + S(\rho_B)$

"eigenvalues multiply - take log - entropies add"

6) Triangle Inequality

$$|S(\rho_A) - S(\rho_B)| \leq S(\rho_{AB}) \leq \underbrace{S(\rho_A) + S(\rho_B)}$$

Use Klein's Inequality: $S(\rho) \leq -\text{Tr}(\rho \log \sigma)$

$$\begin{aligned} \text{Let } \rho = \rho_{AB} \text{ & } \sigma = \rho_A \otimes \rho_B \rightsquigarrow S(\rho) &\leq -\text{Tr}[\rho \log (\log(\rho^A) + \log(\rho^B))] \\ &= -\text{Tr}[\rho^A \log \rho^A] - \text{Tr}[\rho^B \log \rho^B] \\ &= S(\rho_A) + S(\rho_B). \end{aligned}$$

7) Concavity: $S(\sum_i p_i \rho_i) \geq \sum_i p_i S(\rho_i)$

"extra randomness only increases uncertainty"

$$p_i = \sum_j x_j^i |x_j^i\rangle\langle x_j^i| \quad \text{Let: } \rho_{AB} = \sum_i p_i \rho_i \otimes x_i x_i^\dagger$$

$$\rho_A = \sum_i p_i \rho_i \quad \rho_B = \sum_i p_i x_i x_i^\dagger$$

$$\begin{aligned} S(\sum_i p_i x_j^i |x_j^i\rangle\langle x_j^i|) &\leq S(\rho_{AB}) \leq S(\rho_A) + S(\rho_B) \Rightarrow H(\{\rho\}) + \sum_i p_i S(\rho_i) \leq S(\sum_i p_i \rho_i) \\ &= -\sum_i p_i x_j^i \log p_i x_j^i + \sum_i p_i x_j^i \log x_j^i \quad \hookrightarrow H(\{\rho\}) + H(\{\rho\}) \\ &= H(\{\rho\}) + \sum_i p_i S(\rho_i) \quad \checkmark \end{aligned}$$

Analogously to the classical case we can define:

$$\text{Joint entropy} \quad S(\rho_{AB}) = -\text{Tr}(\rho_{AB} \log(\rho_{AB}))$$

$$\text{Conditional entropy} \quad S(\rho_A|\rho_B) = S(\rho_{AB}) - S(\rho_B)$$

$$\text{Mutual information} \quad S(\rho_A : \rho_B) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$$

Note that the Venn diagram breaks down in this case

e.g. Conditional entropy can be negative

$$\text{Say } \rho_{AB} = |\psi^+\rangle\langle\psi^+| \quad \rho_A = \rho_B = \frac{I}{2} \quad S(\rho_{AB}) = 0 \quad S(\rho_A) = -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} = \log 2 = 1$$

$$S(\rho_A : \rho_B) = -1! \quad \text{"Uncertainty in joint state is less than the reduced states"}$$

Relative Entropy

- Not a distance measure (3)
- But can be used to measure the similarity between two quantum states (2) (2)

$$S(\rho \parallel \sigma) := \text{Tr}(\rho \log \rho - \rho \log \sigma)$$

$$= \sum_i \lambda_i \left(\log \lambda_i - \sum_j |\langle \mu_j | \lambda_i \rangle|^2 \log (\mu_j) \right)$$

Reduces to the classical relative entropy if diagonal in same basis but more generally depends on the overlap between their eigenbasis

Properties :

- 1) Positivity : $S(\rho \parallel \sigma) \geq 0$
- 2) Faithful : $S(\rho \parallel \sigma) = 0 \iff \rho = \sigma$
- 3) Asymmetric : $S(\rho \parallel \sigma) \neq S(\sigma \parallel \rho)$
- 4) Unitarily invariant : $S(U\rho U^\dagger \parallel U\sigma U^\dagger) = S(\rho \parallel \sigma)$

clear from

Data processing Inequality $\stackrel{= \text{ holds for unitary evolutions}}{\downarrow}$

$$S(\mathcal{E}(\rho) \parallel \mathcal{E}(\sigma)) \leq S(\rho \parallel \sigma) \quad \forall \mathcal{E}$$

\Rightarrow "There is no channel you can apply that will make ρ & σ more distinguishable"

Some also holds for 1 norm

$$\|\mathcal{E}(\rho) - \mathcal{E}(\sigma)\|_1 \leq \|\rho - \sigma\|_1 \quad \forall \mathcal{E}$$

(But it doesn't hold for 2-norm)

Mixed State Fidelity

$$F(\rho, \sigma) = \text{Tr}(\sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}})$$

Case 1 : ρ & σ commute $\Rightarrow \rho = \sum_i r_i |i\rangle\langle i|$ $\sigma = \sum_i s_i |i\rangle\langle i|$

$$\begin{aligned} F(\rho, \sigma) &= \text{Tr} \left(\sqrt{\sum_i r_i s_i |i\rangle\langle i|} \right) \\ &= \text{Tr} \left(\sum_i \sqrt{r_i s_i} |i\rangle\langle i| \right) \\ &= \sum_i \sqrt{r_i s_i} \\ &= F(\Sigma, \Sigma) \quad \checkmark \text{ Classical fidelity} \end{aligned}$$

Case 2 : σ , $\rho = |\psi\rangle\langle\psi|$ $(|\psi\rangle\langle\psi|)^2 = \rho \Rightarrow \rho^{\frac{1}{2}} = |\psi\rangle\langle\psi|$

$$\begin{aligned} F(\rho, \sigma) &= \text{Tr} \left(\sqrt{|\psi\rangle\langle\psi| \sigma |\psi\rangle\langle\psi|} \right) \\ &= \text{Tr} \left(\sqrt{\langle\psi|\sigma|\psi\rangle} \sqrt{|\psi\rangle\langle\psi|} \right) \\ &= \sqrt{\langle\psi|\sigma|\psi\rangle} \quad \checkmark \text{ Fidelity between pure and mixed state is equal to the overlap} \end{aligned}$$

Case 2.5. $\sigma = |\phi\rangle\langle\phi|$ $F(\rho, \sigma) = |\langle\psi|\phi\rangle|$

\checkmark
Note the lack of mod.
Square here \Rightarrow this is a matter of convention
I'm following N&C here.

General case? Operational interpretation provided by Uhlmann's Theorem

Uhlmann's Theorem:

$$F(\rho, \sigma) = \max_{\psi, |\psi\rangle} \max_{\text{purifications of } \psi \otimes \sigma} |\langle \psi | \sigma | \psi \rangle|$$

$$\text{where } \rho_s = \text{Tr}_R(\rho \otimes \rho_{RS}) \text{ and } \sigma_s = \text{Tr}_R(\sigma \otimes \rho_{RS})$$

proof - exercise sheet this week.

Data processing inequality also holds here

$$F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \geq F(\rho, \sigma)$$