
 

Entropy S Information

Shannon Entropy Recap

Suppose we learn a random variable X

H X E p logp uncertainty about X before
learning it

111

Note Gin ologo 0 Amount of information wegain
on learning Xlog I log

Suppose a source is producing data in theform of random
variables X X X3

Suppose each random variable can take a character on
with probability pie
What's the minimalphysical resources required to storethe data produced by the source

Answ A symbolstring can be compressedto n H X symbols

Shannon'snoselesscodingarent

Eg Suppose a sourceof information produces t 2 3 N 4
wit probabilities kj 8

A naive binary encoding t 00 2 01 35 10 4 11

On average the lengthof astingwith this encoding is

2 t
t t 2x I t 2 4 428 t 2



Then we can use the bias to reduce the amount of symbols
required to store date from that source by using less charactersto store commonly obtained symbols S move to obtain
less likely ones

eg I 0 25 60 3 110 4 111

On average the lengthof astingwith this encoding is

t
t t 2x t t 3 t 3 18 4 s 2

New code is more efficient

Sketch ofgeneralproof
Binary case first X s I wit prob Po

p

Consider a date stringof length n

In the limit of large n a typical bit string
will contain about a lo p Os and Np Is

There are n
c up

such typicalstrings

log Cap
s botanical
log n log np hog ne pl

Use sterling approximation login e align h Mitty

log np
e n log n n aplognp up n lo p loglatsp

nie p



up log p nit p log is p
s n flip

T
no y typicalstrings I 2 binaryentropy

Compression strategy assign a positive integer to
each of the possible typical
bit strings

There are 2 P
such strings

so 2 letters are required

s each letter can be encoded using a Hip bits

Note the completely uniform distribution cannot be compressed

ie Hl's s lost's lol't s lol't s log2 1

in A bits are encoded in n bits

Generalisation beyond binary case

If letter K occurs withprobability pie in a stringoflength n each he will typically occur apu times

th n

gtfo
such typicalstrings

s

pig I 2 so n thx binary
encodingpossible

Operated interpretationof Sharon entropy



ConditionalEntropy S Mutual Information

Consider 2 random variables X s Y

How is the information content of 4 related to Y

Conditional entropy s Mutu information provide answers

Butfirst Joint Entropy

HIX Y play costper.si

This is the totaluncertainty about X s Y

Suppose we know the valueof Y so we havegained H Ybitsof information
The conditions entropy y X on knowing Y is the remaining
uncertainty in T on knowing Y

HI X1 X Hex Y HY

Mutual information measures the amountof information Xand Y have in common ie measures their correlations

HIX Y H X HH HA Y

Thefollowing Venn diagram is a superuseful tool toget a
sense of their properties



x HH

MN Mt D ANN P

d

If completelyuncorrelated

Can readoff someproperties straightfrom the venn

O S Hex X S HLA
H X Y H X1 X

O f Hix x s min HIX 1401

Drawing Venn is helpfulfor providing an intuition but is notthe full story always prove inequalities also independently

Problem sheetfor this week will providemany

Relative Entropy a measure oftheclosenessof 2 distributions Usefulforprovingstuff

HI pls 11 glo s E pla logEg so if.pl se'd

tilt E plat lost941

H pla 11 glo s 0 toprovethis use hostels II
tilplaygull É E.pl iIyH pla 11 Td 11 H x E per logi ld

Costd H X
Shannon entropy I relativeentropy to may uncertain distribution



Von Neumann Entropy eigsop
k

Slp Trip logp s Eiti log hi
H a

Similarlyto danial case Sip quantifies thecompressibilityofquantum
information

P can be compressed t o that lives on a Hibertspace
He

wit din He s 2 Stp

Intuition roughly the same 7 can look at subspace corresponding
to typical sequencesof eigenvalues
See Preskill's notesfor a proof

Important Properties

1 Pure states have zero entropy

P lx ext as I Slp logis so

2 Invariance Sl UpUt Scp leeginvalues are

leftunchanged
3 Maximum MarStp SI'd s loged

i



4 Entropy of
measurement

Say you measure M s Mj Imj Mj

p m s mil pl m

Y mj plmil

Hix s Stp
Equivalent to thestatement that replacing p in any basiswith its decohered variant increasesentropy

ie Killingoff coherence increasesentropy

5 Additivity Slpaopo 51Pa Slpo
eigenvaluesmultiply take log entriesadd

6 Triangle Inequality

151Pa Spo s Spao s S pal Spo

Use Klein's Inequality Stp s Triplogo
Let P Pao s o s prop no Slp s Tripavgpal logpull

Tripalogpa Tripologpo
Sipa t s Ipo

F Concavity SC Ei pi pi 3 Ei pi Spi
extra randomness only increases uncertainty

Ii it Lpa ippi o likil
Pa Ei pi pi Po s Ei pi likil

pix iaji Ajit
Epix'stoypit's S Pao s Sepa SIPo I HXp3 EpistilsShipipi
Ejpix logpi isPitilogis g g p p

H p y Hyp
I 103 Ei pis pi



Analogously tothe classicalcase we can define

Joint entropy S pao s TrlPao logpan
Conditionalentropy Stpalpo SIPao Spo
Mutual information Spa po Sepa t stpo Sla

Note thattheVenndiagrambreaksdown in this case

eg Conditionalentropy can benegative

say Pao 105204 pas pas
spa 0 spa s h log't Yzlog't

s
log2 I

51 pal po I 1 Uncertainty injointstateis less
thanthe reducedstates



Not a distance measure 3
Relative Entropy A But can be used to measure thesimilaritybetween

two quantumstates E 2

y
ix lait EiMiMiCM

SC p 11 o Tr slog p p logo
Ei Xilloga i f Ismile F logMj

Reduces to the classicalrelative entropyif diagonalin sane basis but
home

generally depends on theoverlap between their ecginbais

Properties

e Positivity Slp 110 7 O

2 Faithful Slp o O g p o
Agon

3 Aysymetrie Slp 110 Stoll p



Dataprocessing Inequality holdsforunityevolutions

S Elp X Elo S SIPHO V E

There is no channel you can apply that will make
P S O more distinguishable

Some also holds for I norm

X EG Elo H S p ok VE

But it doesn'tholdfor 2 norm



MixedState Fidelity

ftp.o Trlpkopt

Casey p s o commute s p E til ik it o Ei si licit

Flp o Tr Frisina
Tr Ei Tris likil

Eirisi
Classical

FC I s k fidelity

Casey g p six all it att s p p't small

Flp o Tr Fah
Trl Fon Fall

INKY

Flop y
Fidelitybetweenpureand
miredstateisequalto
the overlap

Case25 O 10701 F p o s Kyl 071

Notethe lackofmod
squarehere n this is
a matterofconventionI'mfollowingNSChere

General case Operational interpretationprovidedby Uhlmann'sTheorem



Uhlmann's Theorem

Too ng
Ftht se

ties
141651

where p s Ty it airs s Os Trp males

proof exercise sheetthisweek

Data processing inequality also holds here

Fl Elp Eco s Flp o


